Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism.
نویسندگان
چکیده
The in situ stimulation of Fe(III) oxide reduction by Geobacter bacteria leads to the concomitant precipitation of hexavalent uranium [U(VI)] from groundwater. Despite its promise for the bioremediation of uranium contaminants, the biological mechanism behind this reaction remains elusive. Because Fe(III) oxide reduction requires the expression of Geobacter's conductive pili, we evaluated their contribution to uranium reduction in Geobacter sulfurreducens grown under pili-inducing or noninducing conditions. A pilin-deficient mutant and a genetically complemented strain with reduced outer membrane c-cytochrome content were used as controls. Pili expression significantly enhanced the rate and extent of uranium immobilization per cell and prevented periplasmic mineralization. As a result, pili expression also preserved the vital respiratory activities of the cell envelope and the cell's viability. Uranium preferentially precipitated along the pili and, to a lesser extent, on outer membrane redox-active foci. In contrast, the pilus-defective strains had different degrees of periplasmic mineralization matching well with their outer membrane c-cytochrome content. X-ray absorption spectroscopy analyses demonstrated the extracellular reduction of U(VI) by the pili to mononuclear tetravalent uranium U(IV) complexed by carbon-containing ligands, consistent with a biological reduction. In contrast, the U(IV) in the pilin-deficient mutant cells also required an additional phosphorous ligand, in agreement with the predominantly periplasmic mineralization of uranium observed in this strain. These findings demonstrate a previously unrecognized role for Geobacter conductive pili in the extracellular reduction of uranium, and highlight its essential function as a catalytic and protective cellular mechanism that is of interest for the bioremediation of uranium-contaminated groundwater.
منابع مشابه
Electron transfer at the cell-uranium interface in Geobacter spp.
The in situ stimulation of Fe(III) oxide reduction in the subsurface stimulates the growth of Geobacter spp. and the precipitation of U(VI) from groundwater. As with Fe(III) oxide reduction, the reduction of uranium by Geobacter spp. requires the expression of their conductive pili. The pili bind the soluble uranium and catalyse its extracellular reductive precipitation along the pili filaments...
متن کاملThermally activated charge transport in microbial protein nanowires
The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of m...
متن کاملStructural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations.
Geobacter sulfurreducens (GS) electronically connects with extracellular electron acceptors using conductive protein filaments or pili. To gain insights into their role as biological nanowires, we investigated the structural dynamics of the GS pilus in solution via molecular dynamics simulations. In the model, all of the pilin's aromatics clustered as a right-handed helical band along the pilus...
متن کاملLong-range electron transport to Fe(III) oxide via pili with metallic-like conductivity.
The mechanisms for Fe(III) oxide reduction by Geobacter species are of interest because Geobacter species have been shown to play an important role in Fe(III) oxide reduction in a diversity of environments in which Fe(III) reduction is a geochemically significant process. Geobacter species specifically express pili during growth on Fe(III) oxide compared with growth on soluble chelated Fe(III),...
متن کاملThe Low Conductivity of Geobacter uraniireducens Pili Suggests a Diversity of Extracellular Electron Transfer Mechanisms in the Genus Geobacter
Studies on the mechanisms for extracellular electron transfer in Geobacter species have primarily focused on Geobacter sulfurreducens, but the poor conservation of genes for some electron transfer components within the Geobacter genus suggests that there may be a diversity of extracellular electron transport strategies among Geobacter species. Examination of the gene sequences for PilA, the typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 37 شماره
صفحات -
تاریخ انتشار 2011